Can
Phytoliths Save the World?
Or:
Plants do Carbon Capture and Storage Quite Naturally
Can Phytoliths….. Can what?? Many people have
never heard of phytoliths, but I have worked on them for nearly 40 years, so
let me tell you a little about them, and then I will describe some of my recent
research. Yes, these unheard of phytoliths might help in the fight against
climate change. But read on.
Pampas grass |
When a plant dies the leaves, stems and
flowers fall into the soil and are incorporated into the soil organic matter
(humus). But the phytoliths are much more resistant to breakdown in the soil
and can persist for hundreds or thousands of years. Because they last a long
time, and have shapes and sizes that are characteristic for the plants they
come from, phytoliths are used by archaeologists and palaeoecologists to work
out what people grew and ate, and past environments and climates.
There is increasing interest in carbon
sequestration in soils. It is recognised that the soil is a huge carbon store and that if we could find ways of increasing that storage then it could really
help to suck carbon dioxide out of the atmosphere. But one of the big problems
with this idea is that carbon sequestration in the soil is reversible. So once
plant materials enter the soil and form humus it is susceptible to breakdown,
releasing the carbon dioxide back to the atmosphere.
Back in 2005 some Australian phytolith
experts, Parr and Sullivan, had a brilliant idea. They realised that phytoliths
encapsulate carbon within their structures. According to their calculations, phytoliths store a lot of carbon in the soil and potentially sequester it
within the silica for a very long time. Their paper and their idea created a
whole new area of phytolith research. The idea has not been without
controversy, particularly over how much carbon can be stored in phytoliths.
Nonetheless, the area remains a major focus for phytolith research.
In the 1980s I spent a long time looking at
how phytoliths developed within the plant, and I have kept up this interest,
publishing a major review on the topic in 2016. Plants have two main types of
phytolith: those developing in the cell lumen; and those that form in the cell
wall on a carbohydrate (largely cellulose) matrix. If you did biology at school
you might remember the cell wall as a kind of box around the lumen. The lumen contains the cytoplasm and all of the organelles, including the chloroplasts,
nucleus etc.
I was invited by the Frontiers journal
organisation in 2017 to be a guest associate editor for a special collection of
papers, "Frontiers in Phytolith Research". I assembled an editorial
team of experts from around the world and started to invite potential authors.
But what would I write my own paper on? I decided that I wanted to look at one
aspect of the carbon sequestration in phytoliths story that I felt had been
neglected. Which types of phytolith are most important in storing carbon in the
soil? Is it the cell lumen or the cell wall types?
Wheat inflorescence phytolith |
I then needed to find out what happened to the
two types of phytolith in the soil. The received wisdom is that cell wall
phytoliths break down faster in soil than lumen types. But I carried out a
major literature survey looking for evidence to support this contention, and I
couldn't find any! Moreover, when I investigated the archaeological and
palaeoecological literature I found that cell wall phytoliths were present in a
wide range of contexts and could be found in samples that were thousands of years
old. Having done all this, I then constructed two hypotheses: one to consider
what happens to phytoliths when they are prepared in the laboratory (this also
addressed the question of how much carbon is stored in phytoliths); and the
second concerned what happens in the soil.
Can phytoliths save the world? Probably not!
But I think we need to look far more carefully at the rather neglected cell
wall phytoliths. As I say in my paper, phytoliths are unlikely to be a
"silver bullet" for climate change, but they may have a role to play.
We are spending large amounts of time, money and energy on trying to get carbon
capture and storage to work on power stations. Why not see if plants can do it
naturally? Can we find ways to increase carbon sequestration in phytoliths and
in soils? In my paper, I have outlined a whole lot of work that we need to do
over the next few years. Let's get on and do it!
Martin J. Hodson
(July 2019)
Martin J. Hodson
(July 2019)
Images:
1) Pampas grass image- Shirley Hirst on Pixabay:
https://pixabay.com/photos/grass-pampas-grass-pampas-56993/
2) Wheat inflorescence phytolith- MJH